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AXISYMMETRIC BENDING OF A HEATED CIRCULAR PLATE ON AN ELASTIC BASE 

WITH ACCOUNT OF ITS DEFORMABILITY OVER ITS THICKNESS 

M. D. Martynenko and E. A. Svlrskii UDC 539.3 

The axisymmetric problem is solved for the bending of a circular plate on a 
heated half-space under the action of a distributed load and a temperature 
field. 

One of the founders of the theory of bending of beams and plates on an elastic base is 
Prektor [i, 2], who, in 1919, formulated a computational process for the reduction of the 
problem of bending of a narrow beam on a half-space to the solution of an integrodifferential 
equation taking account of the elastic deformations of contiguous bodies. Because the series 
of solutions that he obtained proved to be weakly convergent [2], another variant of this 
method was formulated, based on integral account of the crumpling of a beam over its thick- 
ness [3, 4]. As was shown by these calculations, taking account of the crumpling of a beam 
over thickness leads to a considerable redistribution of the reaction pressure under the base 
of the beam. Below, we give a further development of Proktor's method applied to circular 
plates resting on an elastic half-space. 

i. We consider a circular plate of radius ~, on the bounding planes of which the ex- 
ternal loads and temperature are constant: 

cry------q, T = T , = c o n s t  for z = - - h ,  

try-------p, T----T~----const for z = h .  
(I) 
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We assume that the temperature varies linearly over the thickness of the plate and is inde- 
pendent of the radial coordinate. To determine the value for the crumpling of a circular 
plate we must find the normal displacement u z. On the basis of Hooke's law, taking account 
of the temperature distribution and the Cauchy equilibrium equations, in a cylindrical co- 
ordinate system for the case of axial symmetry, we have the following system of equations 
for the components of the displacement vector: 

( Au~.-- ~ )~  + (;L -t- Ix) -~- r0 [ - - ~ r l  (ru,) q- ~0uz ] --(32~-{- 29) o: 0T--or (2) 

O [@ d (ru~)- F Ou~ ]--(32~-'~-21~)0~.c3T=0. (3) 

We seek a particular solution of Eqs. (2) and (3) in the form 

0~ atF 
U r -- , UZ ~ - -  

Or Oz 

Substituting (4) into (2) and (3), we obtain 

(4) 

A solution of Eqs. 

where 

1 o~' o (5) 
I~ r ~ Or q- - ~ r  [(~ q- 21~) AtF -- (3~, -4- 2l~) o~T] = 0, 

[(~, -~ 2~) A~ -- (3~, --I- 21 x) ~TI = 0. (6) 
Oz 

(5) and (6) satisfying conditions (I) is the function 

~F=Cz4- 2(L4-210 a Az~+ Bz 3, , (7) 

1 
A -'=~ - -  

2~x (3L + 2tx ) 
B-- : - -  ! 

2~ (3~, -t- 2Ix) h 

1 T (p ,2_q) .@ ~ (  2 +  T1), 

(p -- q) + ~ (r~ -- r~). 

Convergence of the bounding planes (crumpling) of the plate equals 

W c r = U z ( _ h ) _ u z ( h )  = ( 1 - - 2 v ) ( l + v ) h . ( p + q )  l + v  h(T~+Tx) .  (8) 
E(I --v) 1 --v 

2. We consider the bending of a freely supported circular heated plate on an elastic 
base. As usual, we assume that the temperature over the thickness of the plate varies ac- 
cording to a linear law. Then the thermal stresses in the plate equal zero [5]; therefore, 
the normal deflection of the middle plane of the plate w(r) for an axisymmetric load is de- 

termined from the equation 

a ~ r dr 

Using the Green's function for the auxi l ia ry  boundary-value problem of [6], from (9) we obtain 

W 
! a ~ 

t G (r, t) [q (t) -- p (t)l tdt q- C O -~- C~r z, 
D 

(10) 

where 

1 I ( r * - i - t 2 ) l n t + l - - t  ~, r ~ t ,  
a (r, 0 = - i -  ~(t ~ + ~ )  in ~ + 1 - r ~, t < ~ .  

The arbitrary constants Co and Ca are determined from the conditions satisfied by the free 

edge [7]: 
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1 1 

[ /p (t) dt = .t' tq (t) dr, 

i I 

.f lap (t) dt+ 16Eha 
o 3 a  ~ ( 1 -- v) ~ ' C~=: ,i' taq (t) dr. 

0 

(Ii) 

3. We assume that on the boundary of the half-space z > 0 in an arbitrary region D we 
are given a normal load p(x, y) and temperature T=(x, y); outside the region D, the temperature 
and load are absent. Then the temperature distribution T(x, y, z) in the half-space is given 
by 

2~ , ~ -  ~)~ + ( j  - -  1~,)~ + r l  ~ 
D 

The stresses and displacements corresponding to the temperature field of the half-space are 
expressed in terms of the thermoelastic potential of the displacements $(x, y, z), which has 
the form [8]* 

~o i" i" ~' ( ~ -  ~)~ + (~,-- ~)~ + :  - ,# Y, Z )  ~n T~ (~, ~) do~d[3 
4~ ,,! L,~ v (x - @ + (,j - l~) ~ 

D 

~~ ; S  T~(o~, ~)doM~ 
4 a  g (x - -  ~z) ~" + (y  - -  [~)2 + z : '  

D 

(12)  

where 

[3 ~ 1 + v  
- -  ( Z 0 .  

1 - - ' v  

Thus, the distribution of the normal stresses o z in the region D taking the temperature into 
account is determined by the equation 

-- % = p (x, g) Eao T~ (x, y). 
2(1  --~) 

4. The sag (normal displacement) of the boundary points of the half-space in the case 
under consideration can be represented in the following way: 

r Y 1 ,3 

r ' - -  t ~sin 2(p ,, Y t  e - r  ~sin eq~ r~Eo ,, , i/ k 
0 ,3 r 0 

�9 1 -7 

2(1+ %)ao ~ 1" T z(t) t&gdt + V t ~ - r  2sin 2q~ " 
. V ' r  2 - t  2sin ~q~ . . 
0 0 r 0 

(13) 

The normal displacement of the points of the middle surface of a plate on an elastic base 
under the action of an axisymmetric load q(r) can be represented in the form 

! 

m, = w0 + ~Wcr, (14) 

where wo is the displacement of the lower surface of the plate, equal to the sag of the bound- 
ary points of the hall-space (13); Wcr is the approach of the two bounding surfaces (crumpling) 
of the plate (8). Equating the right sides of (I0) and (14), we obtain the following integral 
equation of the second kind for the determination of the unknown reaction pressure: 

*There is an error in the article 18]. 
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o o,5 

- -  - -  - -  2 
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P 

o qs r 
i 

Fig, i. Distribution of the reaction pres~ 
sure under a plate loaded by an external 
load for q(r) = i (a) and q(r) = 2- r (b): 
i) reaction pressure with account of crump- 
ling of the plate without temperature; 2) 
the same, with account of crumpling of a 
heated plate; 3) the same, neglecting crump- 
ling and temperature. 

1 

ep (r) + I K (r, t) p (t) tdt = f (r), (15) 

where 

K (r,  t) = 

T 

0 

2 

P.I 
0 

dqo 
V r "~ - -  t 2 s in :  (p 

+ ? [(r  ~ + t =) In r ,4- 1 -- r~], t < r ,  

d(p 

V t 2 - -  r 2 s in  2 qD 
+ ? [(r2 + t2) ln t + l - -  t2], r < t, 

1 

f 2 ( 1 - -  v) E (Co + C ~  ~) - -  
f ( r ) = - - e q ( r ) - ? 4 V .  G(r, Oq( t ) t d t  + ( l + v ) ( 1 - - 2 v ) a  

0 
Jl ~[ 

r T  I 7  
T, (t) td~dt + + ~ - -  (T~ + T,), 

�9 , g r~ - -  t 2 s i n  ~ q) g t 2 - -  r2 s i n  2 q) 1 - -  2v 
0 0 r 0 

h 8 E  (1 - -  "~) ( 1 - -  '%) 3 ( 1 - -  v)~ a 3 4 E  (1 - -  ~)  (1 + %) s o  
e = ~ ,  1 3 =  , ' ~ - -  r l =  ' 

a n E o ( 1  - -  2"v) (1 + v)  4 ( 1  - -  2 v ) h  3 '  n (1 - -  2v)  (1 -}- v)  

( 1 6 )  

( 1 7 )  

Since T=(r) = const, for the function f(r) we have 

1 

S0(r ,  t) [ (r) = - -  eq (r) + 4"t q (t) 

0 

Y 

-nr.j" g 
0 

ldt + 2 (1 - -  v) E (Co + C~r ~) - -  

(1 -}- v ) (1  - -  2~,) a 

~E 
1 - - -  r ~ s i n  z q) d ( p +  e i " 2 v  ( 7 1  + T~).  

(is) 

We will seek a solution of Eq. (15) by using the approximation 

N 

p (r) = ~ dhq~h (r), (19) 

where ~(r) are S-like functions with compact carrier in the neighborhood of the point r k. 
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Substituting (19) into (15) and (ii), and using the method of collocation, we obtain a 
system of N + 2 algebraic equations with N + 2 unknowns d k (k = i, N), Co, and C~. For con- 
struction of a program we take single functions as the ~k(r). In Fig. 1 we show graphs of the 
behavior of the reaction pressure under the base of a circular plate, for an external load 
q(r) = 1 (see Fig. la) and q(r) = 2 -- r (see Fig. ib). All the calculations were carried out 
for the following values of the parameters appearing in Eq. (15): 

E = Eo = 2 0 0 0 k O / m m ~ ; v  = 0 .17;  vo = 0 . 2 ;  h = 0 . 2 m ;  a = l m ;  

T1 = T~ = 100~ ~ = 1 .10  - 5  , ~o = 5 " 1 0 - 6 .  

The numerical calculations show that taking account of the deformability of the plate 
over the thickness leads to stable numerical algorithms, and also to the redistribution of 
the reaction pressure in comparison with the classical results for the bending of a circular 
plate. Then the parameter c in Eq. (15) can be considered a regularizing parameter in the 
solution of an integral equation of the first kind, corresponding to the problem of! thermo- 
elastic bending of a circular plate on an elastic base in the classical formulation. The 
calculations that were given above enable us to give a concrete sense to it. 

NOTATION 

Oz, component of the stress tensor; q, external load; p, reaction pressure; TI, T2, tem- 
peratures of the upper and lower planes of the plate; 2h, height of the plate; 2a, diameter 
of the plate; Ur, Uz, components of the displacement vector in cylindrical coordinates; A, 
Laplace operator in cylindrical coordinates; ~, thermoelastic potential; ~, so, coefficients 
of linear expansion of the plate and the base; ~, ~, Lam~ coefficients; E, Young's modulus; 
u, Poisson ratio; Wcr, crumpling of the plate; w, middle surface of the plate; wo, sag of the 
boundary points of the half-space; @, thermoelastic potential. 
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